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A theoretical model is developed for the sound generated when a convected vortical or 
entropic gust encounters an airfoil at non-zero angle of attack. The theory is based on 
a linearization of the Euler equations about the steady subsonic flow past the airfoil. 
High-frequency gusts, whose wavelengths are short compared to the airfoil chord, but 
long compared to the displacement of the mean-flow stagnation point from the leading 
edge, are considered. The analysis utilizes singular-perturbation techniques and 
involves four asymptotic regions. Local regions, which scale on the gust wavelength, 
are present at the airfoil leading and trailing edges. Behind the airfoil a ‘transition’ 
region, which is similar to the transition zone between illuminated and shadow zones 
in optical problems, is present. In the outer region, far away from the airfoil edges and 
wake, the solution has a geometric-acoustics form. The primary sound generation is 
found to be concentrated in the local leading-edge region. The trailing edge plays a 
secondary role as a scatterer of the sound generated in the leading-edge region. 
Parametric calculations are presented which illustrate that moderate levels of airfoil 
steady loading can significantly affect the sound field produced by airfoil-gust 
interactions. 

1. Introduction 
The unsteady interaction of airfoils with convected disturbances is a phenomenon 

that occurs in a wide variety of technological applications. This interaction is 
responsible for much of the sound generated by aeronautical propulsion systems and 
for unsteady blade loading which may lead to fatigue failures in these systems. In many 
applications, the airfoils have substantial levels of steady aerodynamic loading. 
However, the airfoil steady loading, and the attendant distortions of the mean flow, 
are often ignored in noise-prediction analyses. The present paper examines the 
influence of mean incidence angle on sound generated by the interaction of convected 
disturbances with a flat-plate airfoil. The mean flow is assumed to be compressible but 
subsonic, and attention is concentrated on the high-frequency situation where the gust 
wavelength is short compared to the airfoil chord. 

Most analyses of airfoil-gust interactions have utilized the classical linearized 
approach, in which the total flow is represented as the sum of a uniform flow, an U(a) 
(relative to the uniform field) steady disturbance, and an U(e) unsteady disturbance. If 
one assumes that a and 6 are small and comparable, in analysing the unsteady flow it 
is natural to neglect the U(a) corrections to the steady flow. The unsteady calculation 
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then corresponds to a small perturbation of a uniform flow, which simplifies the 
analysis considerably. However, in many cases c( + E ,  and it then becomes desirable to 
include the effects of the mean flow distortion on the unsteady motion. 

The significance of steady-loading effects on sound generated by airfoil-gust 
interactions was first recognized by Ffowcs Williams & Hawkings. They developed an 
elegant extension of Lighthill’s acoustic analogy (Ffowcs Williams & Hawkings 1969 a) 
which accounted for the presence of surfaces in arbitrary motion. In a subsequent 
paper (Ffowcs Williams & Hawkings 1969b), they utilized this theory to show that 
airfoil steady loading produces a quadrupole source related to the Reynolds stresses 
arising from interactions of the convected gust with gradients of the mean flow. 
Subsequently, Ffowcs Williams & Hall (1970) examined the scattering of a ‘free’ 
quadrupole field by an extended surface with a sharp edge. They found that, at 
sufficiently low flow speeds, this scattered field due to the sharp edge dominates over 
the contribution from the surface dipole terms. The theory developed in the present 
paper examines the influence of airfoil steady loading from a different point of view, 
but in the proper limit will be seen to have much in common with the quadrupole 
theories of Ffowcs Williams. 

The acoustic analogy is an exact statement of the laws governing the fluid motion, 
cast in the form of a constant-coefficient linear wave operator with a quadrupole source 
term representing nonlinear and other effects. However, sound predictions utilizing the 
acoustic analogy require the source term to be modelled, since its exact form can be 
found only by solving the original nonlinear fluid-dynamic equations. Most models of 
the quadrupole source terms for airfoil-gust interactions have been quite simplistic. 
For example, Ffowcs Williams & Hawkings (1969b) simply replaced the distributed 
sources by a single concentrated source, while Goldstein, Rosenbaum & Albers (1974) 
modelled the airfoils as point vortices. Such approximations have value at low 
frequencies where the source region is compact, i.e. small compared to the acoustic 
wavelength. The present paper addresses the high-frequency case where the source 
region is highly non-compact and modelling of the quadrupole source terms is more 
difficult. 

Our theory utilizes an alternative formulation for analysing the interaction of bodies 
with convected disturbances. This formulation is an extension of classical rapid- 
distortion theory (Batchelor & Proudman 1954), initiated by Hunt (1973) for 
incompressible flows and modified and extended to compressible flows by Goldstein 
(1 978). Rapid-distortion theory considers inviscid linear unsteady disturbances to an 
irrotational base flow. Thus it accounts for the distortion of vorticity by mean-flow 
gradients, but neglects viscous effects and the nonlinear interactions between the 
disturbance quantities. In contrast to the acoustic analogy, in the present approach the 
source terms which arise in the governing equations are known precisely, and hence no 
heuristic modelling is required. 

Rapid-distortion theory has previously been utilized to study the interaction of 
airfoils with convected disturbances in the incompressible flow limit. Goldstein & 
Atassi (1976) and Atassi (1984) considered two-dimensional flow, and developed the 
first-order correction to the unsteady flow in the limit of small reduced frequency. Less 
progress has been made for the case of compressible mean flows. Goldstein’s (1978) 
formulation reduces the problem to the solution of a single linear convected-wave 
equation with specified source terms and boundary conditions, but for a compressible 
mean flow the equation has variable coefficients. These variable coefficients, as well as 
functions appearing in the source term and boundary conditions, must in general be 
determined numerically. A numerical solution of the rapid-distortion equations for the 
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sound field produced by compressible airfoil-gust interactions was presented by Scott 
& Atassi (1990) and Atassi, Subramaniam & Scott (1990). 

For a compressible mean flow which is a small perturbation to a uniform flow, 
Kerschen & Myers (1987) derived approximate closed-form expressions for all the 
functions which appear in Goldstein’s formulation. The present paper utilizes the 
result of Kerschen & Myers (1987) to develop approximate closed-form expressions for 
the sound field produced by convected disturbances interacting with a flat-plate airfoil 
in compressible flow. A complete theory that includes the first-order effects of airfoil 
steady loading is developed. The theory is a systematic asymptotic expansion which 
contains no heuristic modelling. The analysis uses a combination of complex-variable 
and singular-perturbation techniques. We consider short-wavelength gusts and small 
incidence angles. The theory is linear in the gust amplitude c,  which is assumed to be 
very small compared to the O(a) mean-flow disturbance. 

Our results indicate that aerodynamic loading values typically found in turbo- 
machinery have significant effects on the radiated sound. Comparisons with the 
acoustic-analogy approach are also made. Certain characteristics predicted by the 
earlier acoustic-analogy models are recovered, confirming the physical mechanisms 
proposed by Ffowcs Williams. New features of the physics are also found, illustrating 
the importance of propagation effects which are often ignored in models based on the 
acoustic analogy. 

2. General formulation 
The analysis considers inviscid linear disturbances of a two-dimensional irrotational 

compressible mean flow, utilizing the formulation developed by Goldstein. Small- 
amplitude vortical and entropic disturbances are assumed to be present in the uniform 
flow far upstream of the airfoil. These disturbances convect downstream and interact 
with the airfoil, generating sound in the process. 

Goldstein (1978) showed that the analysis of the unsteady motion could be reduced 
to the solution of a single inhomogeneous convected-wave equation. His formulation 
utilizes a decomposition of the unsteady velocity disturbance in the form 

U‘ = VG’+ u’, (2.1 a)  

where it should be noted that u’ is not solenoidal. Rather, u’ satisfies a modified form 
of the linearized momentum equation which can be integrated exactly using the 
method of characteristics. Thus u’ is a known function which contains the upstream 
vorticity and the additional vorticity generated by interaction of the upstream 
disturbances with the mean-flow gradients. The irrotational field satisfies (Goldstein 
1978) 

1 

Po 
--V.(JJ,VG‘) = -V*@,V‘), (2.1 b) 

and the pressure is prescribed by 

p’ = -Po Do G’IDt. (2.1 c) 

The substantial derivative D,/Dt is taken with respect to the local mean flow. The 
quantities po and a, are the local values of density and speed of sound for the mean 
flow. The boundary condition on G’ at any rigid surface is 

aG‘/an = -u’.n,  (2.1 d )  

where n is the unit normal vector. The radiation condition applies at infinity. 
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For incompressible flow, (2.1 b) reduces to a Poisson equation. For the compressible 
case, the mean-flow quantities which appear in (2.1 b) must in general be determined 
numerically, precluding the possibility of an analytical solution. Therefore, we will 
consider a simplified form of (2.1 b) which assumes that the mean flow is a small (O(a)) 
perturbation of a uniform flow (Kerschen & Myers 1987). 

Since vorticity and entropy disturbances convect with the (non-uniform) mean flow, 
it proves convenient to introduce the mean-flow velocity potential and streamfunction, 
and the spanwise position x3,  as orthogonal curvilinear coordinates. We set 

# = #plum b, $ = P, $ p / U ,  b, x3 = X3p/b, (2.2a) 

Here #, and $ p  are the physical velocity potential and streamfunction, x3 ,  the 
dimensional spanwise coordinate, U ,  the speed of the uniform mean flow far from the 
airfoil, and b the airfoil semi-chord. The introduction of the factor P, = (1 -ML)' /2  
( M ,  = U,/a,) in the definition of $ corresponds to a Prandtl-Glauert transformation 
(Ashley & Landahl 1985). The appropriate coordinate metrics are 

(2.2b) 

where U, is the local speed of the mean flow. 
The unsteady disturbances satisfy linear equations whose coefficients are constant in 

regions where the mean flow is uniform. Hence, we can represent arbitrary upstream 
disturbances as a superposition of harmonic components, and develop the solution for 
a single harmonic component. The upstream velocity and entropy disturbances are 

(2.3 a, b)  

where k = wb/U, (2.3 c) 

is the reduced frequency of unsteady aerodynamic theory, time is normalized by b/U,, 
and c p  is the specific heat at constant pressure. The dimensionless parameter E is 
assumed to be small. In anticipation of the high-frequency analysis, we have expressed 
the $ and x3 wavenumber components in terms of k, which subsequently will be 
assumed large. Far upstream the vortical velocity must be solenoidal, hence 

A t + A , k , p , + A 3 k 3  = 0. (2.3d) 

In order to obtain closed-form analytical approximations for the coefficients and 
source term in (2.1 b), we assume that the mean flow is a small perturbation, say O(a) 
to a uniform flow, with 6 < a 6 1. The mean-flow disturbance can then be described 
by a complex potential aF(Q, where 5 = $+i$, and the function F can be obtained 
from incompressible theory (Ashley & Landahl 1985). Specifically, if the complex 
disturbance potential for the corresponding incompressible flow is aF,(x, + iy,), where 
(x,, y,) are physical coordinates non-dimensionalized by b and 4 is normalized by 
bU,, the appropriate compressible complex potential in the present coordinates is 

a 
aF = - &(# + i$) + O(a2). 

Upon setting the derivative dF(Q/d[ equal to q-ip, we identify q as the normalized 
perturbation in flow speed: 

and aP,p as the perturbation in flow angle in the physical plane. 

P, 

Uol u, = 1 +%I(#, $1 + O ( 4 ,  
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By introducing the transformation 

- A($, $) eWk3x3-t) e-ikM&+/pL eaMLq (2.4a) 

and neglecting O(a2) terms, Kerschen & Myers (1987) simplified Goldstein's wave 
equation (2.1 b) to 

Lo@) + aL,(h) = akS($, $) eikQ. (2.4b) 

The operator Lo is the standard Helmholtz operator 

G' 
eUW b 
-- 

(2.4 c) 

where 

and S = I//?;. The operator L, contains variable coefficients, and accounts for effects 
of the mean-flow gradients on the acoustic propagation. This operator takes the form 

w2 = (SMw)2 - (k,/Pw)2 

(2.4d) 

Note that the coefficients in L, depend on $ and $ only through the normalized 
perturbation in flow speed q($, $). The amplitude S(4, $) of the source term in (2.4b) 
is given by 

2 
' ( $ 9  $) = -{'(A: -kn An PL) 4 +i(kn A: PL + A n  ~ w ) p  P: 

+ A ,  M 2, Pw -I}, a4 (2.5 a) 
a$ 

where A,* = A , - B .  The phase of the source term is 

where (2.5 c) 

The integral g(4, $) is Lighthill's Drift function, which represents the cumulative 
distortion of vortex filaments by the non-uniform mean flow. For a mean flow which 
is a small perturbation of a uniform flow, g can be approximated by (Kerschen & Balsa 
1981) 

g(A $1 = - a2 Re [mN, (2.5d) 

where the arbitrary constant in the complex potential F(z) is chosen such that the Drift 
function vanishes at upstream infinity. 

The boundary condition (2.1 d) transforms to 

applied on the body surface. The terms in (2.6) containing M2, have arisen from the 
factor eaMLq in the transformation (2.4a) from G'  to h. This factor, which simplifies the 
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differential operator L,, transfers to the boundary condition some of the influence of 
mean-flow gradients in the wave operator of (2.1 b). 

To prescribe the pressure in terms of the modified potential h, we utilize (2.4a) in 
(2.1 c) and find 

It will be useful to work in terms of the modified pressure p ,  defined by 

The analysis thus far applies to a general small-perturbation mean flow. In the 
remainder of this paper, we concentrate on the sound field generated by the interaction 
of convected disturbances with a flat-plate airfoil at non-zero incidence angle, a. 

3. Analysis for a flat plate 
We consider a flat plate of length 2b at mean incidence angle a to a uniform stream, 

interacting with a time-harmonic convected disturbance whose wavelength is short 
compared to the airfoil chord. The problem is illustrated in figure 1. The O(a) 
perturbations to the mean flow appearing in (2.4)-(2.6) are then given by the complex 
potential 

F ( 0  = +(log[[- 1 +[[([-2)]1'2]+[-[[([-2)]1'z+ C) 

and complex velocity 
1 

F ' ( 0  = q-ip = -[1-(([-2)/C)l/']. 
P, 

(3.1 a) 

(3.1 b) 

The function F appears in several places in our analysis; the arbitrary constant C will 
be specified for each application. The airfoil surface in the ($,@)-plane is given by 
0 < 4 < 2+ax/P,, $ = 0'. The location of the trailing edge is different for the upper 
and lower surfaces, owing to the net circulation. 

We develop an asymptotic solution to (2.4b) for small a and large k. The asymptotic 
expansion has a singular-perturbation nature, and involves four different regions 
whose sizes are controlled by the reduced frequency. The various asymptotic regions 
are illustrated in figure 2. The appropriate lengthscale in the local regions near the 
airfoil leading and trailing edges is the disturbance wavelength. Since we assume that 
M ,  is O( l), the wavelengths of the convected and acoustic disturbances have the same 
order of magnitude. In the outer region away from the airfoil leading and trailing 
edges, the mean flow varies slowly compared to the disturbance wavelength and the 
solution has a geometric-acoustics form. In addition, there is a 'transition region' of 
O(k-'I2) angular extent downstream of the airfoil. Here the multiple-scale dependence 
of the outer region applies in the streamwise direction, but a rescaled transverse 
coordinate is required to describe the transition between the ray fields which have 
propagated along the upper and lower surfaces of the airfoil. 

A further assumption a2k -g 1 is utilized in the analysis. For a flat-plate airfoil at 
small incidence angle, the shift in the mean-flow stagnation point from the leading edge 
is O(a2b). Thus, this assumption implies that the shift of the mean-flow stagnation 
point is small compared to the disturbance wavelength. In practical terms, wavelengths 
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FIGURE 1. Flat-plate airfoil at incidence angle a encountering a convected disturbance. 
Disturbance lengthscale A is assumed to be much smaller than the airfoil chord. 

Outer region 

_____- - - - -  O( 1 lk) O( Ilk) - - - - -  - -  - - -  
, \  ~. --_ I \  , .  _ - _  IO(llk1”) 

’%\ ,: Transition region . ,  ._.- % ,  . ,  - _ _ -  
Local Local ----------_-._________ 

leading-edge trailing-edge 
region region 

FIGURE 2. Illustration of asymptotic regions, with sizes given in dimensionless coordinates. 

so small that this assumption is violated probably do not contribute much to the 
sound field. For a2k 4 1 ,  the mean-flow gradients are weak when expressed in local 
leading-edge coordinates. This property is utilized in developing the solution in the 
leading-edge region. 

and ak’12 are 
retained, while those of relative order l / k ,  a, and a2k are neglected. If we set 
k = O(a-Y), this ordering is consistent with values of y in the range 2 / 3  < y < 2. 

The following sections present the details of the analysis in the various regions. 
Throughout the paper, upper-case letters are used for local (leading- or trailing-edge) 
quantities and lower-case letters for outer quantities. The unsubscripted independent 
variables are referenced from the leading edge. Additional subscripted variables, both 
dependent and independent, are defined in the course of the analysis. 

3.1. Local leading-edge region 
In the local leading-edge region, we introduce local coordinates (@, !P) which scale on 
the disturbance wavelength and have their origin at the leading edge. After choosing 
the arbitrary constant in (3.1 a)  to be -in: (so that the drift function vanishes at 
upstream infinity), and substituting the coordinates 

into (3.1), we obtain the expansion 

In the analysis that follows, perturbation terms of relative order 

@ = k4, Y = k$ (3 4 

Hence, the mean-flow disturbance in this local region is dominated by the flow around 
the edge. It is interesting to note that the Drift function (2.5d),  representing cumulative 



218 M .  R. Myers and E. J.  Kerschen 

phase distortion of the convected disturbances from upstream infinity, vanishes to O(a) 
at the leading edge. Upon utilizing the local expansion (3.3) in (2.4)-(2.6), we find that 
the solution in the leading-edge region has the asymptotic expansion 

1 
' - k  

H - - [H,  + ak1"(H1 + H ,  + H3) + O(a2k7 a)]. (3.4) 

The terms H I ,  H ,  and H3 are of equal importance, but have been separated because 
they represent different physical effects. The function Hl represents the influence on the 
airfoil-surface boundary condition of vorticity distortion by mean-flow gradients, 
while H,  is generated by the volume-source term of (2.4b) and H3 contains the 
influence of local mean-flow gradients on the acoustic-propagation characteristics of 
the medium. 

The solutions in the local leading-edge region are developed using Fourier-transform 
methods. In leading-edge coordinates the airfoil body appears semi-infinite. Hence the 
mixed boundary-value problems governing the functions in (3.4) may be solved by 
application of the Wiener-Hopf technique (Noble 1958). Our interest is in the sound 
which propagates to the far field, and for this only the asymptotic behaviour of these 
local solutions many wavelengths from the leading edge is required. This asymptotic 
behaviour is found by the method of steepest descent. The solutions for H,, H I ,  H ,  and 
H3 are presented in the following subsections. 

3.1.1. Solution for  H,  
The first term H,, is the classical leading-edge solution for the case of zero incidence 

angle. Here the sound generation is due solely to blocking by the airfoil surface of the 
undistorted vortical velocity. The governing equations are 

and 

where 

L(H,) = 0 (3.5~) 

(3.5b) 

(3.54 

Since the airfoil appears locally semi-infinite, the boundary condition is applied on the 
half-plane @ > 0. The solution 

(3.6~) 

where a(h, Q7 Y )  = - ih@ - I 'YI (A2 - w2)liZ (3.6b) 

is found by a standard application of the Wiener-Hopf technique. The singularities of 
the integrand are a pole at h = - S and branch points at h = f w. The pole corresponds 
to local hydrodynamic motion near the plate, while the branch points are related to 
acoustic motion. We take the inversion contour to be the real axis, and assume that 6 
and w have small positive imaginary parts. The singularities and associated branch cuts 
are shown on figure 3. (Additional singularities and branch cuts which arise later are 
also illustrated.) 

The asymptotic matching with the outer solution requires the expansion of (3.6) in 
outer coordinates. For convenience we introduce polar forms of the inner coordinates, 

R = (Q2 + Y2)l/', 8 = arctan (Y/Q), (3.7~) 
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FIGURE 3. Singularities in the complex plane encountered at various stages of the analysis. 
(Branch cuts denoted by dashed lines.) Steepest descent path is also shown (solid curve.) 

and the outer coordinates, 

r = (qP + l l r2) l I2  = R / k ,  8 = arctan ($/$) = arctan (Y/@). (3.7b) 

Inserting (3.7b) into (3.6) introduces the large parameter k in the exponent (3.6b), and 
the method of steepest descent can be utilized to obtain the asymptotic expansion. 
After a transformation to the steepest-descent path illustrated in figure 3, the integrand 
is dominated by points near the saddle point of a(A) at A, = - w cos 8, and the method 
of steepest descent produces the expansion 

eikwr 

Ha = Do(8) ~ + O(k-3/2), 
(kr)lI2 

(3.8a) 

where 
A ,  eciXi4 cos 

Do(8) = - p, [n(8 + w)]""8- w cos 8) . (3.8b) 

3.1.2. Solution for Hl 

The function HI  accounts for the O(akl/') terms in the local leading-edge expansion 
of the airfoil-surface boundary condition (2.6) which involve vorticity distortion. The 
governing equations are 

L(HJ = 0 (3.9a) 

and 31 = - + i4 2/2 A ,  8@'/' e'". (3.9b) 

The boundary condition arises from the local expansion of the drift function (2.5d) 
appearing in the phase SZ of the vortical velocity v'. Essentially, the local flow around 

au Y=O', Q > 0 
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the leading edge increases the convection speed of the vorticity along the upper surface, 
and decreases it along the lower surface. Only the component of vortical velocity 
normal to the streamlines at upstream infinity appears in (3.9b), and the entropy 
disturbance does not enter. Note that the boundary condition (3.9b) corresponds to a 
source distribution rather than a vortex distribution as in (3.5b). Hence, HI  is a 
symmetric function of Y, and a straightforward application of Fourier-transform 
methods leads to 

(3.10) 

where 6 is assumed to have a small positive imaginary part, ensuring convergence of 
the transform of (3.9b), and the branch point from - 6 is taken in the lower half of the 
A-plane. By introducing outer variables in (3.10) and again employing the method of 
steepest descent, we obtain the asymptotic expansion 

eikwr 

HI = Dl(O)(kr)"2 + O(k-3/2), (3.11 a) 

where (3.llb) 

3.1.3. Solution for H, 
The function H ,  is generated by the volume-source term in (2.4b), which is O(ak'/') 

in the local leading-edge region. The expansion of this source term in local leading-edge 
coordinates leads to the inhomogeneous differential equation 

L(H2) = ei(6@+k* y, { R-'/' [ C, cos :O + C ,  sin iO] + RP3I2 [ C, cos :O + C, sin $3]}, 
(3.12a) 

where 

The source term in (3.12~) is closely related to the quadrupole source of Ffowcs 
Williams & Hawkings (1969b). We choose to satisfy the boundary condition 

(3.12~) 

and hence H, is also related to the quadrupole field scattered by the leading edge as 
discussed by Ffowcs Williams & Hall (1970). The exact correspondence between our 
work and that of these authors is discussed later. 

A particular solution for H ,  is obtained by applying a double Fourier transform to 
(3.12u), followed by inversion on !P through contour integration. The result is 

ein/4 eikn Y sgn ( Y)f,(A)] ehY@3 @, y, dA 
H2p = 8n1/'(S2 + ki) { ( A  + 6)1/z ( A  - A,) ( A  - A,) 

where hy(A,@, Y )  = -ihQ,-(Y([(h+6)(h+6')]1/2, (3.13 b) 
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f,(A) = [iC, - 2C4(A + S)] (- 6, + k i  - w2 -2SA) + [C, + 2iC3(A + S)] 2ik,(A +a), 
28 1 

(3.13 c) 

and 

f 2 ( A )  = [iC2 - 2C4(A + S)] 2ik,(A + 8) + [C, + 2iC3(A + S)] (- 6, + k i  - w2 - 2SA), 
(3.13d) 

(3.13e) 

Here S' is assumed to have a small negative imaginary part as contrasted to the small 
positive imaginary part in 6. The poles and branch points contained in (3.13a) are 
shown in figure 3. The phase hy(A, @, Y )  is 'hydrodynamic' as opposed to the 
'acoustic' phase a(A, @, Y )  defined earlier in (3.6b). For large R, integrals containing 
hy(A, @, Y )  represent disturbances which are convected by the mean flow, while 
integrals containing a(A, @, Y )  represent disturbances which propagate at the speed of 
sound relative to the mean flow. The functions f ,  and f ,  are quadratic functions of their 
arguments whose coefficients depend on the gust characteristics and mean-flow Mach 
number. 

The second integral in Hzp ,  with the phase a(A, @, Y) ,  actually satisfies the 
homogeneous equation L ( H )  = 0. This contribution arises naturally in the utilization 
of Fourier transforms and is essential for the solution to obey the correct edge 
condition near the airfoil leading edge. In the absence of this contribution the 
particular solution asymptotically behaves as R-ll, near the leading edge, while with it 
the behaviour is R'/2. A direct integration of'the source term in (3.12a) in the R < 1 
limit confirms that the solution H ,  should exhibit R'12 behaviour near the leading edge. 

Contour integration shows that the particular solution H 2 ,  and its derivative 
BH,,/BY are continuous across the line Y = 0, but aH,,/i3Y is non-zero for @ > 0. 
Hence, a complementary solution H,, is required in order to satisfy (3.12~). The 
calculation of H,, involves a non-standard application of the Wiener-Hopf technique, 
which is presented in the Appendix. The result is 

ea(A, 0, Y )  dh 

(3.14) 

In order to match with the outer solution developed in the next section, we expand 
H ,  in outer variables. The integrals containing the acoustic phase a(A, @, Y )  are 
expanded asymptotically by the method of steepest descent as discussed previously. 
The only complication is the path deformations required around the branch cuts 
emanating from 6 and S'. It can be shown that the contributions from the vicinities of 
these branch points are exponentially small compared to that arising from the saddle 
point of a(A, @, Y ) .  For the integrals containing the phase hy(A, 0, Y) ,  the integration 
path along the real axis is deformed into two rays which meet on the real axis at 
A = - 6, and along which the imaginary part of hy(A, @, Y )  is constant. (Deformations 
are required around the branch cuts emanating from kw.) The integrand is 
exponentially decaying along the rays and the dominant contribution comes from the 
vicinity of h = -6. The asymptotic expansions are given by 

1 (A, + 6)f2(AJ + iknfl(A2) + ( A  + w)'/Y(4 
[(A, - w) (A, +#)]'/"A, -A,) ( A  - A 2 )  ( A  + 6)1'2(h - A,) ( A  - A,) ( A  + w)1/2 * 

+ 
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and (3.1 5 c) 

with 

0 1  + W)””f,(Al) 

(A, + 6)1/2(Al + w cos 0) 4(h, -A,) (ik, C, + iSC,) + 

(3.15d) 
cos ;e 1 - ( A ,  + 6)f2(A,) + ik,fl(h,) 

[(A, - w )  ( A ,  + sl)]’/“A, + w cos 0) 4(A, -A,) ( 6 2  + k;) . 

The first term of (3.15a) arises from the integral in H2,  containing hy(A, @, Y ) ,  and 
represents a disturbance convected at the mean-flow speed. The other terms in (3.15) 
arise from the integrands containing a(A, @, Y ) ,  and represent sound generated by the 
volume quadrupoles and the subsequent scattering by the leading edge. For 
compactness in later expressions for the outer acoustic field, we combine the volume- 
source-related directivities D,, and D,,: 

D2(0) = D2&9) + D,c(@ (3.15e) 

3.1.4. Solution for H3 
The function H3 represents the influence, in the local leading-edge region, of the 

spatial variation of the coefficients in the wave operator of (2.1 b). The spatial variation 
of the coefficients is related to sound propagation through a variable-property medium. 
In the local leading-edge region, the spatial variation of the medium occurs on the same 
scale as the acoustic wavelength, and hence the interaction of the acoustic field with 
these local gradients can result in additional sound radiation to the far field. 

In our simplified wave equation (2.4b) for a small-perturbation mean flow, the 
variable coefficients are contained in the operator L,. Upon using (3.1b) to express 
(2.4d) in local leading-edge coordinates, and substituting the expansion (3.4) into 
(2.4b), we find that aL,(Ho) becomes an O(akli2) contribution which can be taken over 
to the right-hand side as a source term. The resulting inhomogeneous equation is 

M4, R-li2 cos $9 2/32, wzH0 - (y  + 1) ~ 

Pa3 /3: L(H,) = 

+1)M4, aHo 

[ - i ~ , ]  . 
2/2/33, 

(3.16 a) 

The applicable boundary condition is the O(akl/’) term in the local expansion of (2.6), 
minus the contribution contained in (3.9 b) representing vorticity distortion. The 
remainder, which represents a shift of spatial gradients from the original wave operator 
to the boundary condition by the transformation (2.4a), is 

(3.1 6 b) 

The function H,  appearing in the source terms of (3.16a) is known only in the 
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Fourier-integral form (3.6). However, note that the source terms are products of 
harmonic functions with solutions of the Helmholtz equation L ( H )  = 0. This property 
can be exploited to determine a particular solution in the following way. First we 
evaluate the derivatives of Ho appearing in the source terms by differentiating under the 
integral sign. Next consider a function of the form 

F(@, Y )  =A@, Y )  C(h) ea(', '9 ') dh, (3.17) 

where f is harmonic and a is given by (3.6b). Application of the operator L to this 
function yields 

L ( F )  = - 2 [ i s_%, hC(h) ea(A, @- ') dh + sgn (Y )  

x " f r  (h2-w2)1/2C(h)ea(A,',y)dh (3.18) 
ay 1 

in regions where the functions involved are continuous. A particular solution to (3.16a) 
can be obtained by proper combinations of choices for the functionsf(@, Y )  and C(h). 

To find a particular solution for the source terms containing R-l12 cos i6, we utilize 
the functions 

f, = R1I2 cosi6 and f, = Rli2 sin!&?. (3.19a, b )  

After substituting (3.19) into (3.18) and equating the coefficients under the integral sign 
with the corresponding coefficients in the source terms of (3.16a), we possess a set of 
linear algebraic equations for the coefficients C,(h) and C2(h). A similar procedure is 
utilized for the source terms containing R-3/2 cos $6. The final result can be written in 
terms of derivatives of H,, as 

(3.20) 

This particular solution and its derivatives are continuous across Y = 0 in front of the 
airfoil (0 < 0), but on the airfoil surface contour integration produces 

= k 2/2 An [2i6@1/2 + @-1/2] cis@. (3.21) 

This expression must be combined with (3.16b) to form the boundary condition for a 
complementary function H3e. Direct Fourier transformation yields the complementary 
solution 

One additional modification is required to complete the solution for H3. The 
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combination of H3p and H3c satisfies the differential equation and boundary condition, 
but H3p exhibits unacceptable singular behaviour near the origin. A local analysis for 
R < 1 shows that the particular solution given by (3.20) behaves as 

23/2 A einI4 .\/2 A, eini4(7 + 1) M4, , +  
x1'2(8 + w)l'2 x1/2p4,(8 + W)l/Z 

1 6 cos28 C O S 8  

4 2w 8 2 
+---+- +-} + O(Rliz). (3.23) 

The portion of (3.23) in square brackets is a local expansion of spurious eigensolutions 
of the differential operator (3.5 c), with zero-normal-derivative boundary condition on 
the plate surface. The eigensolutions are presumably introduced by the multiple 
differentiations utilized to derive (3.20). The remainder of (3.23) is consistent with a 
direct local integration of the source term in (3.16~). Thus, the singular behaviour of 
(3.23) must be removed by adding eigensolutions of the appropriate sign to (3.20), 
bringing the small-R dependence of the particular solution to that predicted by a direct 
local integration of the source term. Hence we set 

(3.24) 

- .\/2(7+ 1) M4, A, e-in/4 x1/2 2i6 
(Hr)(wR) cos 28 + - Hy)(wR) cos 8 

H3e = SP",(S + w y z  W 

and HY) and Hf) denote first-order and second-order Hankel functions of the first 
kind (Abramowitz & Stegun 1972). 

For asymptotic matching with the outer region, the expansion of H3 in outer 
coordinates is required. Expansion of (3.20) requires only the use of expansion (3.8) for 
H,,, while solutions (3.22) and (3.25) can be expanded using the method of steepest 
descent and the known expansions for the Hankel functions. The results are 

H3p = [i(2kr)'/2w] ('+ 1 ~ ~ ~ ( ~ - w c o s 8 ) z ] ( c o s ~ 8 )  H,+O(k-l), (3.26~) 
PL w 

where H, represents (3.Q and 

(3.26b) 

where 

= [w(6- w iAn cos 8)]1/2 [l-%- p; 6- w & I  cos 8 

1 iAn(y+1)M4, [~cosD--cos28 W . (3.26~) 
+ w3/2(6 + w)1/2 p", 2 4 

The first and second parts of (3.26~) come from H3c and H3e, respectively. Note that 
the asymptotic expansion (3.26~) of H 3 p  is singular with respect to H,, indicating the 
need for a different expansion at larger distances from the leading edge (when 
R = O(k)). 

This completes the solution for the O(akli2) correction to the unsteady motion in the 
local leading-edge region. Many effects not present for an airfoil at zero incidence 
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appear at this stage of the analysis. These include modifications to the boundary 
condition on the airfoil surface, volume-source terms related to the interaction of the 
convected disturbances with mean-flow gradients, and the influence of spatial 
variations in the acoustic properties of the medium. To understand how these effects 
propagate to the far field, we next analyse the outer region. 

3.2. Outer region 
In the outer region, the mean flow varies on the lengthscale of the airfoil chord, and 
hence (2.4 b )  is the appropriate non-dimensional form of the governing equation. Since 
the wavelength of the unsteady disturbance is small compared to the airfoil chord, we 
anticipate multiple-scales-type solutions in this region. 

It is convenient to separate the solution in the outer region into four components. 
The first component h, is a particular solution that accounts for the volume-source 
term in (2.4 b) ,  while the second component h, is a complementary solution required to 
satisfy the boundary condition on the airfoil surface. In addition, the asymptotic 
matching of the outer solution with the local leading-edge and trailing-edge regions 
requires the introduction of two-additional components h, and h,. Thus we set 

h = h,+h,+h,+h,.  (3.27) 

We first solve for h,. In the source term of (2.4b) the phase kS2 varies rapidly 
compared to the amplitude S($,$).  Hence it is natural to seek a particular solution 
which also contains this rapidly varying phase. By utilizing the fact that derivatives 
with respect to the phase dominate those with respect to the amplitude, the particular 
solution 

+ O(a2/k ,  a / k 2 )  
h =-  a S($,$)eikD 

k [w2 - a2 - k:] 
(3.28) 

is readily found. The O ( l / k )  terms in S($, $) can be neglected in (3.28). 
The particular solution h, does not satisfy the boundary condition (2.6) on the airfoil 

surface. Thus a complementary solution h, is required. The complementary solution is 
exponentially small outside thin layers $ = O ( l / k )  adjacent to the airfoil surfaces. To 
account for this boundary-layer behaviour, we express h, as a function of c$ and Y. By 
again taking advantage of the rapidly varying phase kS2, occurring in the normal 
derivative of (3.28) as well as in the right-hand side of (2.6),  we derive the following 
complementary solution for the outer region : 

where 

and 

2 4  ik, S($, 0') (3.29 b )  
A 
P'x P, w 2 - P - k :  .I+($) = A(1 -aM:q($,o*))+a-+a 

( 3 . 2 9 ~ )  

The general characteristics of h, and h, are similar. Both contain the phase kS2, 
which also appears in the vortical velocity u'. Thus, although the disturbances 
corresponding to h,  and h, are irrotational, these disturbances convect with the mean 
flow and are not sound waves. The velocity fluctuations produced by h, are O(a), while 
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the velocity fluctuations associated with h, have O(1) and O(a) components. In 
contrast, the pressure fluctuations for both h, and h, are only O(a/k),  since the 
expression for pressure involves a substantial derivative. Hence only derivatives of the 
slowly varying amplitudes contribute to the pressure field. This result is not surprising, 
since linear disturbances convected by a uniform flow produce no pressure fluctuations. 

The third component of the outer solution, h,, corresponds to propagating acoustic 
waves generated at the airfoil leading edge. This solution is developed in the following 
subsection. 

3.2.1. Leading-edge ray field 
For the leading-edge ray field, the homogeneous form of the wave equation (2.4b) 

applies, along with a matching requirement with the local leading-edge region and the 
radiation condition at infinity. We utilize the polar form (r ,  0) of the outer coordinates 
(4, $), with r = 0 corresponding to the airfoil leading edge. After substituting the 
geometric-acoustics form 

h, = k-3/2A1(r, 0) eikrz(r, 8) + O(k-512) (3.30) 

into (2.4b) and separating orders of k (the factor E3/' has been introduced in 
anticipation of the asymptotic matching) we obtain the eikonal equation 

and the transport equation 

a g l a ~ ,  1 a g , a ~ ,  A ,  1 a ag, 1 azg, 
-~ +---+- -- r -  +-- +O(a)=O. 
ar ar r ae ae 2 [ , a , (  a r )  rz a821 

(3.32) 

We seek a solution for the eikonal equation in the form of a perturbation series 

r, = go, + ag,, + O(a2), 
where the leading term 

go, = wr 

(3.33) 

(3.34) 

is the cylindrical-wave phase appropriate for a flat plate at zero incidence. The first- 
order correction cIz to the phase then satisfies 

where 

= qv(e), 
ar 

(3.3 5 a) 

(3.35b) 

We take advantage of the fact that q(4, +) is the real part of an analytic function dF/d[ 
and integrate (3.35a) in the form 

( 3 . 3 5 4  

Here the perturbation complex potential F is given by (3 . la) ,  with the arbitrary 
constant C chosen as -in so that F vanishes at the leading edge. The function of 
integration g, ,  will be determined by matching. Note that F is discontinuous across 

cIz = V(6) Re (eci8 F(r eie)) +g,,(O). 
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$ = 0, and hence gl1  is discontinuous as well, owing to the differences in convection 
and sound speed above and below the airfoil. For matching with the local leading-edge 
region, the expansion 

(3.35d) 

is needed, while the expansion 

is useful for determination of the far field. We neglect the O(a2) correction to the phase 
g l ,  consistent with our neglect of O(a2k) terms in the solution for the local leading-edge 
region. 

The solution of the transport equation (3.32) is simply given by 

A 1 -  - r-1/2K l(0) + O(a)7 (3.36) 

where the neglect of O(a) amplitude terms is consistent with the neglect of O(a2k) 
terms arising from the phase. 

We now utilize Van Dyke's (1975) rule to match the acoustic solutions in the local 
leading-edge region and the outer region. The two-term outer expansion of (3.4), 
contained in (3.8), (3.11), (3.15), and (3.26), must agree with the two-term local 
expansion of (3.30), when expressed in the same coordinates. The expansions are found 
to match if we set 

K,(B) = o(e) = oo(e) + ak1/2(ol(e) + 02(e) + D,(B)) ( 3 . 3 7 ~ )  

and gll(0) = 0. (3.376) 

Hence the directivities of the cylindrical waves emanating from the local leading-edge 
region appear without change of form in the outer region. Also, in the course of 
matching the singular expansion ( 3 . 2 6 ~ )  is seen to be recast as a geometric phase 
distortion g l l  and an O(1) amplitude (= DO(0)/r1l2) in the outer region. 

The final component h, of the solution in the outer region corresponds to acoustic 
waves generated at the airfoil trailing edge. Deferring for the moment the source of 
these waves, we next outline the derivation of the trailing-edge ray field. 

3.2.2. Trailing-edge ray jield 
The trailing-edge ray field satisfies the same governing equation and radiation 

condition as the leading-edge ray field, and a matching condition with the local 
trailing-edge region. The functional form of the leading-edge ray solution may be used 
again, if reference is made to a new coordinate system (r,,  0,) originating at the trailing 
edge. Owing to the net circulation around the airfoil, the trailing edge is located at 
different values of the coordinate # above and below the airfoil. The location of the 
trailing edge is given by r$ = 2fa7~//3,, where the plus and minus signs apply on the 
airfoil upper ($ = 0') and lower ($ = 0-) surfaces, respectively. Thus, trailing-edge- 
based coordinates for the outer region are 

$4 = #-(2ka7C/Pa3)7 $, = $9 (3.38 a, b )  

where the plus and minus signs in ( 3 . 3 8 ~ )  apply for $ >< 0, respectively. The 
coordinates (Y,, 0,) are the polar form of (#,, $,). 
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The trailing-edge ray field has the geometric-acoustics form 

h, = kP2At(r,, 8,) eikUt(‘t, O t )  + O(k-3). (3.39) 

Analogously to (3.33), the phase is given by the asymptotic series 

ct = wrt + aclt + O(a2), 
where 

(3.40 a)  

clt = [ -&w +(’+ ’) M4, (6- w cos OJ’] I’ q(r;, 8,) dr; +g,,(O,) (3.40b) 
2P2, w 

= V(8,) Re {e-iot 4(r, eiBt)} +glt(8,). (3.40 c)  

The function 4(&) in ( 3 . 4 0 ~ ) ~  

a c t )  = [log {c t  + 1 + [ U C t  + 2)11’2} + c t  - [ct(ct  + 2)1””1, (3.41) 

is the complex potential F in  (3. l), expressed in trailing-edge coordinates Q = $t + 
and with the arbitrary constant C chosen so that E;1 vanishes at the trailing edge. The 
expansion of clt for rt % 1, to be utilized in the far-field solution, is 

clt - - V(8t) [ - Bt cos 8, + sin 8,( - 1 + log 2rt)] +glt(8,) + O( 1 /r t ) .  (3.42) 
P m  

The trailing-edge phase distortion is discontinuous across $ = 0 on the airfoil and in 
front of it, just as ell was discontinuous on the airfoil and behind it. 

The amplitude of the trailing-edge ray field is given by the following expression, 
similar to (3.36) in the leading-edge solution: 

A t - - r-l/2K t t(et)+O(a). (3.43) 

Kt(Ot) and glt(8,) are obtained by matching with the local trailing-edge region, which 
is discussed next. 

3.3. Local trailing-edge region 
In the local trailing-edge region we define coordinates which scale on the disturbance 
wavelength, 

We begin our analysis of the local trailing-edge region by discussing the effect of the 
interaction of the convected disturbance with the trailing edge. Near the trailing edge, 
the steady Kutta condition results in a mean flow which locally is nearly uniform. 
Negligible (O(a)) sound is therefore generated through distortion of the convected 
disturbance. The imposition of the unsteady Kutta condition at the trailing edge 
precludes sound generation by the discontinuity in boundary condition, because the 
vorticity shed into the wake is basically a continuation of the bound vorticity in the 
airfoil. Essentially, the convected singularities which cancel the gust velocity v’ on the 
airfoil can be continued through the local trailing-edge region and extended to 
downstream infinity. The hydrodynamic solution (3.29) also applies throughout the 
local trailing-edge region and along the wake sheet (4, > 0, $t = 0) in the outer region. 

In contrast to the convected disturbance, there are pressure fluctuations associated 
with the leading-edge ray-acoustic field. In general, the leading-edge ray field has 
different values above and below the airfoil. The difference in pressure at the trailing 
edge is cancelled by a local scattered field, which becomes the source of additional rays 
in the outer region. 

Qt = k& Yt = k$,. (3.44) 
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The pressure associated with the leading-edge ray field is found by inserting the 
solution (3.30) into the expression (2.8) for the modified pressure. In the local trailing- 
edge region, the pressure jump across the wake is 

(3.45a) 

The function D(6) is the local leading-edge directivity given by (3.37a),  crl is the 
leading-edge phase function defined in (3 .33E(3 .35) ,  and the constants C ,  - are defined 
by 

C ,  = k8M2(2 & oln/pm). (3.45 c)  

The local scattered field H,(@,, Y,) which cancels this pressure jump is governed by 
the constant-coefficient Helmholtz equation, since non-uniform propagation effects are 
negligibly small in the local trailing-edge region. Thus, 

(3.46) 

Continuity of the total unsteady pressure (incident plus scattered) across the wake 
provides the boundary condition 

The formulation of the scattering problem is completed with the requirement of zero 
normal velocity on the airfoil, aH,/aYt = 0 on Y, = 0, Qt < 0, as well as continuity of 
normal velocity across the wake: 

- e-ic-31 = 0. e-iC+ %I a p t  Yt-0f, Qt > 0 a Yt Ul,=o-, at > 0 

(3.48) 

The solution can be obtained with a straightforward application of the Wiener-Hopf 
technique. The result is 

- sgn ( Y,) i(2w)'I2Ap eic* . (3.49) 
4nk3I2 

H, = 

The plus sign in the constant C ,  applies for Y, > 0 and the minus for Y, < 0. 
The asymptotic expansion of the local trailing-edge solution is required for matching 

with the trailing-edge ray field. Equation (3.49), when written in trailing-edge outer 
coordinates and expanded by the method of steepest descent, becomes 

where 

T(0,) eikwrt 
H, = k2r,1/2 + O(k-3, 01/k2), 

epiXl4 Ap sgn (k,) eiC+ 
2[7tw( 1 - cos 0t)]1/2 (8- w cos 6,) T(6,) = 

(3.50 a)  

(3.50 b) 

The directivity function T(6,) is singular for small values of 6,, owing to the proximity 
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of the saddle point to the pole at h = - w in the integrand of (3.49) (see figure 3 ) .  The 
method of Van Der Waerden (1951) can be used to obtain an asymptotic expansion 
that is uniformly valid in 8,: 

cos 8,)]”2} 

e-in/4(2w)1/2 sin 18 eikwrt 

(xkr,)’l’((s- wcos 8,) 
1, (3 .51)  

where erfc is the complementary error function (Abramowitz & Stegun 1972). For 0(1) 
values of 8,, the asymptotic expansion of the complementary error function can be used 
to recover (3.50). 

The local trailing-edge solution can now be matched with the outer solution to 
specify the undetermined amplitude of the trailing-edge rays. By replicating the 
leading-edge matching process which lead to (3.37), we find that 

K,(@,) = T(8,) and g,,(&) = 0. (3.52a, b) 

Since the outer solution contains T(8,), it is also singular as 8, approaches 0. The 
singularity signifies that the geometric-acoustics assumption of a slowly varying 
amplitude and rapidly varying phase is violated for small values of 8,. An improved 
description of the sound field is needed in this ‘transition’ region, analogous to the 
zone in optical problems between illuminated and shadow regions. Our transition 
region is actually the union of two transition regions. For the wave on top of the airfoil, 
there exists an ‘illuminated’ region above the airfoil, a ‘shadow’ region below it, and 
a transition region between them. Similar regions exist for the wave below the airfoil, 
with the illuminated and shadow regions reversed. The transition region is shown in 
figure 2. 

3.4. Transition region 
The trailing-edge ray solution (3.39) becomes non-uniform when $t = O(k-’”), as can 
be seen by comparing (3.50) and (3 .51) .  In order to resolve this non-uniformity, a 
separate expansion is needed in the transition region where the rescaled variable 

+ 

7 = k’/’$, ( 3 . 5 3 )  

is O(1).  We seek a solution which retains the phase dependence on the fast variable k$t 
and an amplitude dependence on the slow variable $t ,  but which also is a function of 
the transverse coordinate 7 whose scale is intermediate between the fast and slow 
variables. We attempt a solution of the form 

Like the local trailing-edge solution, the transition solution must cancel 
pressure and vertical velocity across the wake due to the discontinuous 
rays. However, in the transition region the r-l/’ decay of the leading-edge 

(3.54) 

the jumps in 
leading-edge 
field must be 

~~ 

accounted for, as must non-uniform propagation effects. 

expansion of the mean-flow perturbation speed in transition coordinates : 
To obtain the differential equation governing the transition field, we require the 

?1 + O(a/k1’2, l /k3I2).  
1 

4 = k1/2pm $2/2(2 + $,)3/2 
( 3 . 5 5 )  
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Upon utilizing (3.53)-(3.55) in the homogeneous form of (2.4b), and imposing 
continuity of the total unsteady pressure and vertical velocity, we find at O(kl/') that 

iA 1 / 2  

e-iC +htn017=,+ -e-ic-htno17=o- = 2 (2) , 
w-6 2+$, 

(3.56 a)  

(3.56 b) 

( 3 . 5 6 ~ )  

The constants e-"i- arise as a consequence of the transformation (2.4a) and the 
different values of $ resulting as a physical point on the wake sheet is approached from 
above or below. 

The solution to the system of equations (3.56) may be found by employing a Laplace 
transform in the $t variable. With the aid of the convolution theorem, we find the 
result: 

The function h,,, describes the scattered field generated by the pressure discontinuity 
across the wake in the leading-edge ray field. The discontinuity in the vertical velocity 
of the leading-edge ray field generates the next term in the transition expansion. 

The system of equations emerging at O(ak) is 

(3.58a) 

e-iC +htnl~7=0+-e-ic-htnl~7=,- = 0, (3.58b) 

A method similar to that used to solve the inhomogeneous equation (3.16) in the local 
leading-edge region can be utilized here. We attempt a solution containing 
combinations of inverse Laplace transforms : 

J -im J -im 

The function h(s,y) is the Laplace transform of htnO, and f , ,  f , ,  C,, and C, are to be 
determined. These functions are found by inserting (3.59) into the operator of (3.58a), 
differentiating under the integral signs and utilizing the differential equation (3.56a) for 
htnO, and then equating the result to the right-hand side of ( 3 . 5 8 ~ )  with h,,, expressed 
as an inverse Laplace transform. The final result can be expressed in terms of the 
solution htnO and its derivatives: 

(3.60) 



292 M .  R .  Myers and E. J.  Kerschen 

This particular solution satisfies the boundary conditions (3.58 b, c); hence no 
complementary solution is required. The complete transition solution, with the terms 
in (3.60) written explicitly and combined, is 

It remains to establish that the transition solution h,, asymptotically matches with 
the local trailing-edge solution and the outer trailing-edge ray solution. Matching with 
the local region does not alter the expressions already given for the transition solution, 
and hence is omitted, but we note that the argument closely follows that used by Myers 
& Kerschen (1992) to resolve undetermined eigenfunctions of the transition solution in 
a related problem. We concentrate instead on matching with the trailing-edge ray 
solution, which generates a common expansion used in composing a uniformly valid 
trailing-edge outer solution. 

In the matching of the transition and trailing-edge outer solutions, the transition 
solution h,, to O(a/k) is expressed in outer variables and expanded to O(a/k ,  l/k2), 
while the outer ray solution (3.39) to O(l/k2) is expressed in transition variables and 
expanded to O(a/k). The two expansions are identical and represent the common 
expansion. When expressed in transition variables the common expansion is 

e-in/4 A eiC, eikw$t+iw~2/2$, 
P 

hcom = (2xw)'/2(8- w )  k 3 9  

The uniformly valid trailing-edge outer solution ht, is the trailing-edge ray field (3.39) 
plus the transition field (3.61) minus the common part: 

h t , n  = ht+htn-hcom. (3.63) 

The far-field form of h t ,u  is given in the next subsection. 

3.5. Total solution in the geometric far$eld 
At this point the solution to the convected-wave equation (2.4) has been determined in 
all of the asymptotic regions. We now collect the various terms into an expression for 
the total acoustic field in the geometric far field, r >> 1. The far-field sound is expressed 
in leading-edge coordinates (r, 0). In the far field, the trailing-edge coordinates are 
related to the leading-edge coordinates by 

rt = r - [2 + sgn (k) an/,8m] cos 0 + O( l/r), (3.64a) 

8, = 8-[1-sgn(~)]x+O(l/r). (3.64b) 
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The total solution is the sum of the outer leading-edge ray field (3.30) and the uniform 
outer trailing-edge solution (3.63). In the limit of r + 1 ,  the total solution becomes 

exp [ikwr + i(akV(B)/P,) sin 8 log 2r] 

x { D(O) exp [i(ak v(~)/P,) [(n - 01 cos 8 + sin 011 
' to tal  - k3/Zy1/2 

' sgn($) A, eiC+ 
(2TC)'/"(s- wcos 8) 

- exp [ - 2ikw cos 8- i(ak/P,) TCW sgn ($) cos 81 

e-ix/4 

erfc {e-ix/4 [2kw( 1 - cos 8)]'/'} + TC1/2 i e-2ikw(l-cosO) 

[2kw( 1 - cos S)]'lZ 

- e~ ' " /~exp  [-i(akV(e)/P,) [(8-~~++ssgn($))cos 8+sin8]] 
[2kw(i - cos e)p2 

(3.65) 

The leading-edge directivity series D(8) is given in (3.37a), (3.8b), (3.11 b), (3.15b,d), 
and (3 .26~) .  The function V(8) is defined in (3.35b) and the constants A, and eiC* 
in (3.45). The terms proportional to the pressure jump A, represent the far-field 
expansion of the uniform trailing-edge solution defined in (3.63). 

The far-field form of the modified pressure, derived from (2.8), is 
ptotal = - ik (~ -  W C O S O ) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  htotal. (3.66) 

4. Results and discussion 
4.1. Summary of solution structure 

The solution structure in each of the asymptotic regions reveals much about the physics 
of sound generated by the interaction of high-frequency convected disturbances with 
aerodynamically loaded airfoils. Below we summarize the results of §3,  noting the 
reduced form of the wave operator and the type of solution in each region. 

In the local leading-edge region, the only relevant lengthscale is the disturbance 
wavelength. The complete differential equation and boundary conditions may be 
approximated by uniform-medium components plus a perturbation series beginning at 
order ak1l2, this quantity being considered a small parameter. Physically, akli2 is 
proportional to the square root of the shift of the mean-flow stagnation point from the 
leading edge, scaled on the gust wavelength. The solution contains a term H,, 
corresponding to a uniform mean flow, plus three additional O(ak1l2) terms, H,, H,, 
and H3, due to mean-loading effects. The term HI  arises from the change in the 
boundary condition on the airfoil surface, due to distortion of the vortical gust by 
mean-flow gradients. H,  is due to the volume sources arising from variations in the 
Reynolds-stress components involving products of the unsteady vortical velocity and 
the mean-flow gradients. Distortion of the entropy disturbance by mean-flow gradients 
also contributes to the source term for H,. As discussed below, the volume source can 
be related to quadrupole sources contained in the acoustic analogy. The function H3 
is generated by the interaction between the field H,, and the local variations in mean- 
flow velocity and speed of sound contained in the perturbation operator L,. Since these 
local variations have the same lengthscale as the acoustic wave, this interaction results 
in additional sound radiation. 

In the outer region two lengthscales are relevant: the airfoil chord, which 
characterizes changes in the propagation medium, and the disturbance wavelength. 
Both of the operators Lo and L, of the wave equation (2.4 b )  must be considered in the 
leading approximation. However, the analysis is simplified by the multiple-scales 
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FIGURE 4(a, b). For caption see facing page. 

behaviour. A volume source is also present in the outer region, but it gives rise to a 
multiple-scales solution with a convected phase. The convection of this disturbance by 
the slowly varying mean flow does not contribute to the acoustic field, which is a 
geometric-acoustic solution to the homogeneous wave equation. The mean-flow 
variation produces O( 1) phase shifts which are captured naturally as distortions to the 
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FIGURE 4. Far-field pressure directivity pattern for M ,  = 0.6: (a) ct = 0, k = 6, 8, = 45"; 
(b)  ct = 6", k = 6, 8, = 45"; (c) ct = 6", k = 12, 8, = 45". 

cylindrical-wave phase appropriate for a uniform medium. The initial conditions for 
the acoustic rays in the outer region are provided by the asymptotic expansions of the 
local leading-edge and local trailing-edge solutions. 

In the local trailing-edge region, the mean flow is nearly uniform owing to the 
imposition of the Kutta condition. Thus, the sound sources in the local trailing-edge 
region due to mean-flow gradients (corresponding to the terms H,, H,, and H3 in the 
local leading-edge region) are of higher order and can be neglected. The trailing edge 
generates sound only by scattering leading-edge rays, which have undergone different 
O( 1) phase shifts in propagating along the two surfaces of the airfoil. This local field 
scattered by the trailing edge is a solution to the uniform-medium Helmholtz equation. 
The saddle-point asymptotic expansion of the local trailing-edge solution, and 
consequently the amplitude of the trailing-edge ray field, are singular at shallow angles 
to the downstream direction. The singularity is evidence of the need for a description 
different than geometric acoustics in a narrow 'transition' region behind the airfoil. 

The extent of the transition boundary layer is 8, (or $J = O(k-l/'). A parabolic 
differential equation approximates the full wave equation in the transition region, and 
jump conditions across the wake are required to cancel discontinuities in the leading- 
edge ray field. The solution maintains a rapidly varying phase, but the amplitude 
acquires a dependence on the intermediate variable klW (or kl/'$). At larger angles 
(where the asymptotic expansion of the error-function solution is appropriate) the 
amplitude develops the slowly varying behaviour necessary for matching with 
geometric acoustics. 

With increases in 01 and/or k, the far-field sound becomes strongly influenced by the 
O(01k''~) sources in the local leading-edge region. Because the trailing-edge ray field is 
weaker than the leading-edge ray field by O(k-ll2), and because the extent of the 
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transition region is O ( l ~ - l / ~ ) ,  the influence of trailing-edge scattering becomes weaker 
as k is increased. These trends are illustrated by numerical results presented in the next 
section. 

4.2. Numerical results 
We postpone a thorough parametric study of the solution until a subsequent 
publication (Myers & Kerschen 1995), where generalizations will have been made to 
include the effects of airfoil camber. Here we demonstrate the importance of incidence 
angle for a selected set of mean-flow and disturbance parameter values. The 
characteristics of the acoustic field are illustrated through pressure directivity patterns 
and computations of total acoustic power. 

The pressure directivity patterns are plotted as a function of angle at a constant 
distance from the leading edge in the physical plane. The far-field relations between the 
Prandtl-Glauert, potential-streamline coordinates (r,  0) used throughout the analysis 
and the physical coordinates (rph, O p h )  are 

tan 0 = /3, tan 0,,, 
r = (1 - M i  sin2 0ph)1/2rph, 

(4.1) 
(4.2) 

where rph is distance from the leading edge, normalized by the airfoil semi-chord b. The 
pressure directivity which we plot is the far-field value of lpl$, where the modified 
pressure p is defined by (2.8) and (3.66). 

A set of pressure directivity patterns is presented for the case where the free-stream 
Mach number is 0.6 and the high-frequency parameter k is 6. The gust is assumed to 
be two-dimensional (A,  = k,  = 0) and purely vortical (entropy amplitude B = 0), with 
an orientation angle BS (the angle between the gust wavevector and mean velocity far 
upstream) of 45". Since the magnitude of the vortical velocity is contained in the small 
parameter E ,  we take IAl = 1 .  Then, from (2.3 d ) ,  we find that A ,  = - 0.707, A,  = 0.707, 
and k ,  = 1.25. Figure 4(a) contains the directivity pattern for zero incidence angle. In 
this case the leading-edge rays travelling just above and below the airfoil are 180" out 
of phase at the trailing edge, and hence on the wake the entire leading-edge ray field 
is cancelled by the transition field. The lobes generated by the interference between the 
leading-edge and trailing-edge rays are also visible on the plot. 

The parameters for figure 4(b) are the same as those for 4(a), except the incidence 
angle has been raised to 6". Even for this small incidence angle, the overall level of the 
acoustic pressure has increased by a factor of approximately two. The sound pressure 
above the airfoil is somewhat larger than that below. A slight amount of radiation 
directly downstream can be seen, as can a jump in pressure directly in front of the 
airfoil. This jump is due to a discontinuity in the trailing-edge rays across the leading 
edge, and would be corrected at the next order in the analysis by a leading-edge 
scattered field. Note that the minimum pressure in figure 4(b) occurs at a shallow angle 
below the wake, rather than directly behind the airfoil. 

For the final directivity pattern in figure 4(c), the incidence angle is again 6" but the 
dimensionless frequency k has been raised from 6 to 12. The overall level of the sound 
pressure in figure 4(c) is quite close to that for figure 4(b). For comparison, the zero- 
incidence-angle result for k = 12 is obtained by multiplying the values in figure 4(a) 
by 1/2/2. Thus, at this higher frequency, the introduction of a 6" incidence angle has 
caused a proportionately larger increase in the acoustic pressure level, consistent with 
the O(ak1I2) amplitude scaling for the incidence angle effects. The sound radiation 
above the airfoil in figure 4(c) is somewhat stronger than that below, as was the case 
in figure 4(b). Also, there is again a slight discontinuity in pressure in front of the 
airfoil. In the k = 12 case, however, there is much more radiation directly behind the 
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FIGURE 5. Radiated acoustic power us. incidence angle. k = I ,  6, = 30’ (solid line) and 60” 
(dashed line). (a) M ,  = 0.5, (b) M ,  = 0.75. 

airfoil. As expected at the higher frequency, the modulation of the directivity pattern 
due to leading-edge/trailing-edge interference is more rapid, and the interference lobes 
are smaller because of the decreased intensity of the trailing-edge field relative to that 
of the leading edge. There are approximately twice as many interference lobes above 
the airfoil than below it, illustrating another manner in which the small incidence angle 
has destroyed the symmetric pattern which occurs in the case of an unloaded flat-plate 
airfoil. 

To calculate acoustic power, we use the definition of acoustic intensity 

Uo (poVG’+p’Uo). 1 (4.3) 

Blokhintsev (1956) showed that this acoustic energy flux is a conserved quantity in the 
geometric acoustics limit (sound wavelength short compared to the scale on which the 
mean flow varies), which applies in the outer region of the present problem. It should 
be noted that the acoustic intensity is not a measure of the total energy flux of the 
unsteady motion, which also has contributions from the vortical and entropic 
disturbances. General discussions of energy relations in non-uniform flows can be 
found in Morfey (1971) and Myers (1991), and in the references cited therein. Our 
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interest is only in the acoustic power generated by the airfoil-gust interaction, and this 
can be found by integrating the acoustic intensity over a closed surface in the far field. 
We proceed by transforming to the reduced potential h (via (2.4a) and (2.7)), 
integrating over a large circle ( r  + 1) in (q5, $)-space (an ellipse in physical space), and 
taking the time average. After non-dimensionalization, the expression for time- 
averaged power-per-unit-span becomes 

Average power/span 
i p m  U: be2 

Normalized power = 

= k2w 1; hh*(P, cos2 8+ sin2 0) (P: sin2 19 + cos2 19)'/2r dI9, (4.4) 

where b is the airfoil semi-chord, 6 the normalized gust velocity (see (2.3)), the far-field 
potential h is given by (3.65) and h* is the complex conjugate of h. 

The amount of radiated sound power is plotted as a function of incidence angle in 
figure 5(a). Here M ,  = 0.5, k = 7 ,  and 8, = 30" and 60". A marked increase in power 
occurs with increasing incidence angle for both gust orientations ; when the incidence 
angle has reached just 10" the normalized power has risen by a factor of about 5.  The 
increase is even sharper at the higher Mach number of 0.75, as shown in figure 5(b). 
A ten-fold rise in power can be seen with an increase in incidence angle of only lo", for 
both gust orientations. On the basis of the small parameter space examined here, we 
conclude that the radiated sound field for high-frequency gust interactions is quite 
sensitive to the incidence angle of the airfoil. 

4.3. Comparison with acoustic analogy theories 
Much of the present understanding of sound generated by gust-airfoil interactions has 
been gained through the use of Lighthill's acoustic analogy. The operator utilized in 
acoustic-analogy approaches corresponds to linear propagation in a uniform medium, 
either at rest or in uniform motion. The effects of variations in the mean-flow 
properties appear in the quadrupole-source term, which is expressed in terms of flow 
variables whose values are not known a priori but would be determined in the course 
of solving the original nonlinear equations. Thus, effective use of the acoustic analogy 
requires that the dominant components of the quadrupole source be identified, and 
that heuristic models for these source terms be introduced. 

In their treatment of fan noise via the acoustic analogy, Ffowcs-Williams & 
Hawkings (1969 b) neglected the 'non-uniform acoustic medium' effects and modelled 
the portion of the Reynolds stress representing the interaction of the steady potential 
flow with the vortical velocity. They concluded that the noise intensity produced by the 
free (volume) quadrupoles depends upon the eighth power of the mean-flow Mach 
number. For comparison, the usual compact-surface radiation first obtained by Curle 
(1955) scales as M 6 .  Thus, Ffowcs Williams & Hawkings concluded that, at high 
subsonic Mach numbers, the free quadrupole sources might become important relative 
to the radiation from dipole sources on the airfoil surface. Ffowcs Williams & Hall 
(1 970) subsequently developed the concept of scattered quadrupole sources, which are 
present when a free quadrupole radiates in the presence of an extended surface with a 
sharp edge. They showed that the scattered quadrupole source radiates with an 
efficiency of M 5 ,  and hence at low Mach numbers dominates both the free-quadrupole 
radiation and the dipole radiation from a compact surface. The Mach-number 
dependencies quoted thus far apply to three-dimensional sources. For two-dimensional 
problems (e.g. a two-dimensional convected gust interacting with an infinite-span 
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airfoil) the efficiencies have the power of M reduced by one. The compact-surface 
dipole radiation thus scales as M 5 ,  the free quadrupole as M',  and the scattered 
quadrupoles as M 4 .  

The rapid-distortion approach to sound prediction utilized in this study differs from 
approaches based upon the acoustic analogy in several respects. For the rapid- 
distortion approach, the differential operator in (2.1 b) governing the unsteady motion 
corresponds to the linear convected-wave equation for a medium with variable mean 
velocity U,, density po and speed of sound a,. The source term in (2.1 b) is given 
explicitly in terms of the convected disturbance far upstream and mean flow-field 
quantities. In contrast to the acoustic analogy, the rapid-distortion approach avoids 
the need for source modelling. Of course, it must be remembered that the acoustic 
analogy is a general formulation that is applicable to a wide variety of noise-generation 
mechanisms. Goldstein's ( 1  978) rapid-distortion theory is applicable only to noise 
generated by the interaction of unsteady convected disturbances with steady potential 
flows. 

Owing to the very different formulations of the two theories, a general comparison 
between the rapid-distortion and acoustic-analogy approaches to the present problem 
is difficult. However, if attention is restricted to the airfoil leading-edge region and to 
low Mach numbers, a meaningful comparison can be made. At low Mach numbers, the 
acoustic wavelength is large and the trailing-edge field can be comparable to the 
leading-edge field (unless the airfoil is long compared to the acoustic wavelength). 
However, since the trailing edge just scatters the sound generated at the leading edge, 
a focus on the leading-edge region remains physically meaningful for the case of short- 
wavelength gusts in the low-Mach-number limit. 

To compare rapid-distortion theory with the acoustic analogy, we revert to the 
physical variables introduced in $2. In the local leading-edge region, the mean flow and 
substantial derivative have the expansions 

U,(X) = U,  + ak1/2UP(X) ( 4 . 5 ~ )  

and (4.5 b) 

The unsteady quantities consist of an O(c) term present for a uniform mean flow, plus 
an O(eakl/') correction which accounts for the influence of a variable mean flow. The 
vortical velocity, unsteady potential, and unsteady pressure have expansions of the 

( 4 . 6 ~ )  form 
V' = E V ~  + cak1/2vi, 

G' = eGh + cak'/2Gi, (4.6b) 

and p' = eph + eak'/'p;. ( 4 . 6 ~ )  
If we utilize the substantial derivative (4.5 b) and the potential function (4.6 b) in (2.1 c), 
and ignore O(M:) terms (a, = a,  [ 1 +  O(M:)], po = pa [1+ O(M2,)]), we find that the 
first-order correction to the unsteady pressure is given by 

The governing equation for p i  is obtained by applying (4.5b) to the wave equation 
(2.1 b), with G' prescribed by (4.6b). After using the fact that up is solenoidal at low 
Mach numbers, and again ignoring O(Mk)  terms, we obtain 
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(The term (l/a",D2,p/1/Dt2 is O(M:) and could be neglected, but is retained for 
subsequent comparisons.) The source term containing the derivative of v;, can be 
simplified using the governing equation for the vortical velocity (Goldstein 1978) : 

Do v' 
-+v ' .VU,  = 0. 

Dt (4.9) 

Upon inserting (4.5a,b) and (4 .6~)  in (4.9) and extracting the O(eak1/2) component, 
introducing the result in (4.8), and utilizing the fact that both v; and up are solenoidal, 
we arrive at the final form of the governing equation for p i :  

a a  
vzp;  = 2p, - - (uf u;,>, 1 DLP; 

a: Dt2  axi ax, 
(4.10) 

where u; = vh+VGh is the total O(e) unsteady velocity. 
The boundary condition for pi  is derived by applying (4.5b) to (2.1 d ) ,  with the 

vortical velocity and potential function given by (4.6 a)  and (4.6b). The resulting 
equation is 

(4.11) 

After expanding the implied summation, inserting the specific form up = (2/R)l" 
x (cos i d ,  sin as), and using (2.1 d)  to equate ohz with - aGh/ax,, we find that the right- 
hand side of (4.11) vanishes; hence, the boundary condition on the airfoil surface is 
simply 

niap/l/axi = 0. (4.12) 

We next examine the present problem from the viewpoint of the acoustic analogy. 
Consider the well-recognized form of Lighthill's equation (Ffowcs Williams & Hall 
1970) 

(4.13) 

where u, represents the total velocity and p the total density. In the local leading-edge 
region we decompose the total velocity into the sum of a uniform mean flow U,, an 
O(ak'/') steady perturbation velocity up, and an O(c) unsteady velocity u'. The total 
density has a similar decomposition, except that the steady-flow perturbation density 
is O ( M i )  relative to the uniform density and is ignored. If we incorporate these 
velocity and density decompositions in (4.13), convert to a convected-wave equation 
(with the aid of the continuity equation), and retain the lowest-order (0(cak1/'))  time- 
dependent source term, we arrive at an equation describing the effects of mean-flow 
variations on the sound field: 

i a  a a  
a: ax, ax, 
++ u, . vI2pt - V p '  = 2p, --(uf Ud). (4.14) 

Equation (4.14) is identical to equation (4.10) governing the O ( ~ a k l / ~ )  pressure pi  in 
rapid-distortion theory. When the usual boundary condition ap'/an = 0 is imposed on 
the solution of (4.14), the boundary conditions for the acoustic analogy and rapid 
distortion theory are identical as well. 

The above analysis shows that, at low Mach numbers, the equations governing the 
O ( ~ a k l / ~ )  components of the pressure fields in the acoustic analogy and rapid- 
distortion theory formulations are consistent in the local leading-edge region. The 



Sound generation by airfoils interacting with gusts 30 1 

practical application of the two theories, however, manifests differences. Proper 
utilization of the acoustic analogy requires knowledge of the total O(c) unsteady 
velocity, which includes the lowest-order irrotational velocity VG;. Since VG; is not 
known in a simple form, quantitative modelling of the source term (e.g. for use in a 
Green's function integral) can become difficult. The rapid-distortion approach, while 
written as a quadrupole source for comparison purposes above, is developed 
systematically in $ 3  as a sequence of boundary-value problems. No modelling of source 
terms is required. 

The similarity between the volume source giving rise to the local leading-edge 
solution H2 and the quadrupole source of the acoustic analogy was noted in $3.1.3. 
However, H ,  is not the same as the solution to (4.10)-(4.12), even after converting the 
dependent variable from potential to pressure. The reason is that vorticity distortion 
on the airfoil surface, represented by the last term in boundary condition (4.1 l), is split 
off from the problem formulation for H,  and contained in the boundary condition for 
H,. This split, which is logical from the point of view of physical effects, has the 
unorthodox consequence of creating cancelling monopoles in the solutions for H ,  and 
H, at low Mach numbers. Each monopole field radiates with an intensity proportional 
to M 3 .  When the solutions H,  and H,  are combined, we recover the appropriate M 4  
behaviour derived by Ffowcs Williams & Hall (adjusted for two dimensions) for a 
scattered quadrupole. In discussing volume-source solutions, then, H ,  should be 
considered in conjunction with Hl when the Mach number is small. 

A final remark relating the present theory to the acoustic analogy at low Mach 
numbers concerns our solution H,, which does not involve mean-loading effects. This 
term arises solely from the unsteady pressure on the airfoil surface, and can be thought 
of as a distribution of dipoles similar to the point dipoles originally modelled by Curle. 
However, the intensity associated with H, scales as M 4 ,  corresponding to a pole of 3/2 
order, rather than as M 5  for the case of an isolated two-dimensional dipole. The 
increase in efficiency over that for an isolated dipole has come about due to non- 
compactness effects. The result of Ffowcs Williams & Hall has sometimes been 
interpreted to imply that 'scattered quadrupole ' sources dominate over 'surface 
dipole' sources at low Mach numbers. The present results show that, at low Mach 
numbers, the non-compact surface sources and the scattered quadrupole sources are of 
equal importance. In fact, Ho and the combination Hl + H ,  also have the same cosi19 
pressure directivity pattern, in addition to the same scaling on Mach number. 

For high subsonic Mach numbers, one might anticipate that the influence of non- 
uniform-propagation effects could be quite important. An advantage of the theory 
presented in this paper over theories based on the acoustic analogy is the natural 
inclusion of variations in the properties of the medium. As noted earlier, these 
variations generate additional sound in the local leading-edge region through the 
solution H3. For O(1) Mach numbers, the source region is non-compact and source 
classifications with respect to pole order are not useful. Rather, the important feature 
for high subsonic Mach numbers is the scaling with respect to the Prandtl-Glauert 
factor, p, = (1 - M&)liz .  For small p,, the acoustic intensities associated with H,, H I ,  
H,, and H3 are proportional to p,", p,", p,", and p,", respectively. Strictly speaking, 
our theory is not valid in the limit M +  1 because our expressions for the mean-flow 
perturbation become singular. Nevertheless, our solution suggests that local scattering 
by the non-uniform medium is an important sound-generation mechanism at high 
subsonic Mach numbers. We defer a full numerical study of the Mach-number 
dependence of the different sound sources to the forthcoming paper (Myers & 
Kerschen 1999, which incorporates airfoil camber into the theory. 



302 M .  R .  Myers and E. J .  Kerschen 

Much of the work described herein was funded by NASA Lewis Research Center 
under grant NAG3-357. We gratefully acknowledge this support. We thank Professor 
T. F. Balsa and other colleagues at the University of Arizona for many stimulating and 
productive discussions. Dr Chung-Tien Tsai contributed to the analysis of the 
transition region and the eigenfunctions of H3. We also express our gratitude for 
computer support from the Division of Electronics and Computer Science of the FDA, 
especially the assistance of Bruce Danielson. 

Appendix 

edge particular solution HZp.  
In this Appendix we calculate the complementary solution H,, to the local leading- 

The normal velocity on the airfoil surface associated with H z p  is 

where 

(A 2) 

The quantities A,, A2,fi ,  andf, are defined in (3.13). To cancel (A l), a complementary 
solution H,, satisfying 

L(H,,) = 0, (A 3 4  

H, , I~$  = o for cij < 0, (A 3 4  

and i3H,,/a Y continuous everywhere (A 3 4  

is required. The operator L in (A 3a) is the Helmholtz operator defined in (3.5~). 

differential equation. The result can be written as 
We apply a Fourier transform in @ to (A 3) and solve the resulting ordinary 

m 

C, (A )  exp [ - i A 0  - I Y I (A2 - w2)liZ] dA. (A 4) 

The plus subscript on the unknown function C(A) indicates that it is analytic in the 
upper half-plane, which is necessary in order that the potential be continuous across 
Y = 0 in front of the airfoil, thereby satisfying (A 3 c). To determine C+(A) we proceed 
by introducing the unknown function u(@) defined by 

By the boundary condition (A 3 b), u(@) = 0 for @ > 0. Upon Fourier transforming 
(A 5 )  and dividing the result by ( A  - w)’/’, we obtain 
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The minus subscript on U-(A) denotes analyticity in the lower half-plane. 
The last term in (A 6) is next split into the sum of two functions, each analytic in one 

half-plane. By observing the location of the various poles and branch points in figure 
3 ,  we see that B(A)/(A - w)l/’ may be written as 

where 

and 

Once again the plus and minus subscripts denote the region of analyticity. It is 
fortunate that B(A)/ (A - w)’l2 can be written as the sum of terms each having branch 
points all in the same half-plane. The resulting Wiener-Hopf split only involves 
separating terms with simple-pole singularities. After completing the split of (A  7a) ,  
inserting the result into (A 6), and rearranging terms, we have 

The left-hand side of (A 8) is analytic in the upper half-plane, the right-hand side is 
analytic in the lower half-plane, and the two sides are equal on the strip 
Im (- w) < Im (A)  < Im (w). They are thus analytic continuations of one another and 
form an entire function. We turn to the edge conditions in the physical plane to 
determine the unknown analytic function. 

The edge condition we impose is that the solution H,, be no more singular near the 
origin than the zero-incidence angle solution H,. The solution H,, possesses a R’j2 
singularity (R2 = @+ Y 2 )  as R approached zero. This same edge behaviour arises 
naturally in the particular solution H,,, obtained by double Fourier transforms. Thus 
we require that behave as R1/, locally, and hence that the transform function C+(A) 
decay as 

The entire function defined by (A 8) can be determined by analysing the left-hand 
side as A tends to infinity in the upper half-plane. The first, second, and fourth terms 
decay to zero and the third approaches a limiting value of 

(A 9) 

in the upper half-plane (Noble 1958). 

- 4ik,C4 - 4iSC,. 

Hence the bounded, entire function is equal to the constant in (A  9). Setting the left- 
hand side of (A 8) equal to this constant, inserting the resulting expression for C+(A) 
back into (A 4), and writing D- and D, explicitly yields the final form of the solution: 
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